
368 R E F I N E M E N T  AT 1.4/~ RESOLUTION OF A MODEL OF ERABUTOXIN b 

HENDRICKSON, W. A. & KONNERT, J. H. (1980). In Computing 
in Crystallography, edited by R. DIAMOND, S. RAMASESHAN 
& K. VENKATESAN, pp. 13.01-13.23. Bangalore: Indian 
Academy of Sciences. 

JONES, T. A. (1982). In Computational Crystallography, edited by 
D. SAYRE, pp. 303-317. Oxford: Clarendon Press. 

KIMBALL, M. R., SATO, A., RICHARDSON, J. S., ROSEN, L. S. & 
LOW, B. W. (1979). Biochem. Biophys. Res. Commun. 88, 950-959. 

KONNERT, J. H. (1976). Acta Cryst. A32, 614-617. 
Low, B. W. & CORFIELD, P. W. R. (1986). Fur. J. Biochem. 161, 

579-587. 

Low, B. W., PRESTON, H. S., SATO, A., ROSEN, L. S., SEARL, 
J. E., RUDKO, A. D. & RICHARDSON, J. S. (1976). Proc. Natl 
Acad. Sci. USA, 73, 2991-2994. 

NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). 
Acta Cryst. A24, 351-359. 

SHERIFF, S. • HENDRICKSON, W. A. (1987). Acta Cryst. A43, 
118-121. 

SMITH, J. L., HENDRICKSON, W. A., HONZATKO, R. B. & 
SHERIFF, S. (1986). Biochemistry, 25, 5018-5027. 

TSERNOGLOU, D. & PETSKO, G. A. (1976). FEBS Lett. 68, 1-4. 

Acta Cryst. (1988). A44, 368-373 

A Reconciliation of Extinction Theories 

BY T. M. SABINE 

N S W  Institute of  Technology, Sydney, N S W  2007, Australia 

(Received 20 December 1986; accepted 15 January 1988) 

Abstract 

The differences between previous theoretical treat- 
ments of extinction based on the Darwin intensity 
equations arise because of the different functional 
form chosen for the coupling constant o-. When the 
same function is used these theories make closely 
similar predictions. It is shown that a limiting con- 
dition on integrated intensity as the crystal size 
increases puts restrictions on the functions which may 
be used. A Lorentzian or Fresnellian function can be 
used for primary extinction while secondary extinc- 
tion requires a Gaussian, rectangular or triangular 
function. An analytical expression is given for the 
variation in the value of the extinction factor with 
scattering angle. 

I. Introduction 

The kinematic theory of the diffraction of X-rays or 
neutrons predicts that the intensity of the diffracted 
beam is proportional to the volume of the crystal. If 
this were the case the intensity of the diffracted beam 
would exceed the intensity of the incident beam for 
sufficiently large crystals. The drawback of the 
kinematic theory is that it ignores the possibility of 
rescattering of the diffracted beam as it passes through 
the crystal. When the incident beam satisfies the Bragg 
condition in a perfect crystal so must the diffracted 
beam, and an interchange of energy between the 
diffracted beam and the incident beam will occur as 
both beams flow through the crystal. The rescattering 
probability increases as the size of the crystal 
increases. 
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For the imperfect crystal (Darwin, 1922), which is 
composed of blocks of perfect crystal (called mosaic 
blocks) tilted at small angles to each other, the beam 
diffracted by one block has a probability of being 
scattered again by a block of identical orientation 
during the passage of the diffracted beam through 
the crystal. The cescattering probability is propor- 
tional to the distribution of mosaic block orientations 
and the size of the crystal. For the perfect crystal 
spatial coherence between scattering centres is pre- 
served across the" entire specimen. In the imperfect 
crystal each block is a perfect crystal but there is no 
coherence between scattering centres located in 
different blocks. 

In crystal structure analysis the phenomenon of 
increasing reduction of the intensity of the diffracted 
beam from the prediction of the kinematic theory as 
the crystal volume increases is termed extinction. The 
extinction factor, y, is defined by 1 °bs= y/kin,  lObS is 
the integrated intensity measured in an experiment. 
/kin is the integrated intensity a Bragg reflection would 
have if the kinematic theory applied exactly to the 
system being examined. 

Extinction within a perfect crystal is termed 
primary extinction. In an ideally imperfect crystal, 
which is one in which extinction within mosaic blocks 
can be ignored, it is termed secondary extinction. 
Both types can occur in the same specimen. 

The randomly oriented powder is a special case of 
the imperfect cr2¢stal. For this specimen the mosaic 
block distribution is known explicitly. 

The object of the theories of extinction is to obtain 
an expression for y in terms of the dimensions and 
microstructure of the crystal so that 1 °bS can be correc- 
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ted to /kin. /kin is then used as a starting point for 
the determination of atomic positions, thermal vibra- 
tion parameters and electron density distributions. 
These are the interests of crystallographers. A very 
different interest in extinction was shown by Fermi, 
Sturm & Sachs (1947), who were concerned with the 
effect of reinforcement of the transmitted beam on 
measurements of the removal cross section for 
neutrons passing through matter. 

To be of use in crystal structure refinement y should 
be expressed analytically in terms of the scattering 
angle, the size of the perfect crystal block, the size of 
the crystal (for primary extinction these are the same) 
and the angular distribution of mosaic blocks. 

The projection into the diffraction plane of the 
normals to each block is assumed to have a Gaussian 
distribution, which is usually given as 

W(A)=[r l (27r ) l /2]  - '  exp [ -  (A2/2r/2)], (1) 

where A is the angular deviation of the projected 
normal to a mosaic block from the mean orientation 
of projected normals to mosaic blocks. It is measured 
on the glancing-angle (0) scale. The standard devi- 
ation of the distribution is r/. Normalization is such 
that ~ W(A) dA = 1. 

Theories which lead to expressions for y which can 
be used in computer programs are those of Hamilton 
(1957, 1963), Zachariasen (1967), Werner (1974) and 
Becker & Coppens (1974). Kato has discussed 
primary and secondary extinction and a combination 
of both in a series of papers (Kato, 1976, 1979, 1980); 
however, no usable expressions are given. 
Olekhnovich & Olekhnovich (1978, 1980) have dis- 
cussed primary extinction for the square-section 
parallelepiped and for the cylinder, while Wilkins 
(1981) has given computer solutions for certain types 
of distorted crystals. Borie (1982) has pointed out the 
implication of Werner's (1974) work for finding a 
usable solution, but does not give one. Sabine (1985) 
has given a theory of primary extinction, without 
absorption, and has experimentally verified the theory 
by neutron diffraction experiments on polycrystalline 
specimens of magnesium oxide. In this paper that 
theory is extended and compared with previous 
results. It is concluded that Hamilton (1957, 1963), 
Zachariasen (1967), Werner (1974), Becker & 
Coppens (1974) and the present work lead to results 
which are essentially identical. 

2. A general observation on extinction 

The model used for the present analysis is shown in 
Fig. 1. As in the discussion of Hamilton (1957) the 
finite crystal can have any shape, but its surface is 
everywhere convex, so that an emergent beam cannot 
re-enter the crystal. It is bathed in a beam which can 
be represented as a plane wave of infinite lateral 
extent. A consequence of this representation is perfect 

collimation, that is the incident beam has no angular 
divergence. Since this discussion deals with integrated 
intensity no error is introduced by using this approxi- 
mation. 

The incident beam enters the crystal along the 
boundary A B  from the left and emerges along the 
boundary C D  to the right. To determine the 
integrated intensity it is necessary to integrate the 
current in the diffracted beam over the exit surface. 
The extinction factor is then the ratio of this quantity 
to the kinematic integrated intensity, 

From this diagram some general observations con- 
cerning the asymptotic behaviour of the extinction 
factor can be made. 

When there is no true absorption of the incident 
radiation the kinematic integrated intensity will 
increase linearly with the volume of the crystal. Under 
extinction conditions, no matter how severe, the 
integrated intensity must increase linearly with the 
increase in fresh crystal surface exposed to the 
incident beam. 

Hence the extinction factor, which is defined as 
the ratio of 1 °bs to  /kin, must become proportional to 
the rate of increase in area of the entrance surface 
divided by the rate of increase in volume. 

This argument puts limiting conditions on the 
behaviour of the extinction factor as the crystal size 
increases. For commonly used crystal shapes the 
limiting values are: 

(a) The parallelepiped with sides parallel to the 
incident- and diffracted-beam directions, and height 
h normal to the diffraction plane. 

This shape is called the A B  crystal by Werner 
(1974). For the special case of sides of equal length 
to (called the A A  crystal in this paper) the volume is 
proportional to to 2 sin 20, and the area of the entrance 
surface is proportional to to. Hence Y,o-.o~ tends 
towards proportionality to 1/(to sin 20). 

The variable, t±, used by Zachariasen (1967) is 
to sin 20, and the above argument may be the reason 
why he made that choice. 

V 

B 
ii 

Fig. 1. The beam enters the crystal through the surface ACB and 
exits through the surface CAD. 
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(b) For the mosaic block of edge a 

y,,-~o~--> proportionality to 1/a. 

(c) For the sphere of radius r 

yr_,o~--> proportionality to 1/r. 

(d) For the right cylinder of radius r and axis of 
length h normal to the diffraction plane 

yr-.oo--> proportionality to 1/r. 

3. The Darwin intensity equations 

The starting point for theories of extinction proposed 
by Hamilton (1957), Zachariasen (1967), Werner 
(1974), and by Becker & Coppens (1974), is the 
generalization of the Darwin energy transfer 
equations by Hamilton (1957). 

These equations are 

O P, / O t, = r P, + o'P s (2) 

O Py/ Otf = ~'Pi + trP,. (3) 

Pi and PI are the current densities (neutrons cm -2 s- ~ ) 
at the position in the crystal whose coordinates are 
ti, ty. The distance ti is measured along the incident- 
beam direction while tf is measured along the diffrac- 
ted-beam direction. The coefficient r is the removal 
cross section per unit volume. It includes all processes 
which remove energy from a beam bathing a crystal. 
The sign of r is always negative. The coefficient tr is 
the cross section per unit volume for Bragg scattering. 
The angle between ti and t r is 20. 

Exact solutions of these equations for 20- -0  and 
for 20 = ~- in a semi-infinite flat plate of thickness Do 
are given by Hamilton (1957). 

In this paper it is assumed that Bragg scattering is 
the only removal process. For this case ( r - -  - t r )  the 
solutions for the current at the exit surface of the 
crystal are given by Zachariasen (1945). 

( a ) Symmetric Laue case 

~P~[1-exp ( -2o 'D) ] ,  D--  Do/cOs 0. (4) p f  l o 

( b ) Symmetric Bragg case 

Ps= P°crD/(1 +~rD), D =  Do/sin 0. (5) 

pO is the current at the entrance surface. Do is again 
the plate thickness. 

Zachariasen (1967) and Sabine (1985) chose the 
solution to the symmetrical Bragg case as an approxi- 
mation to the general solution. Hamilton (1957, 1963) 
used a finite difference method to provide a general 
solution by computer. Becker & Coppens (1974) 
express (2) and (3) in integral form and use numerical 
methods. Werner (1974) found an exact solution in 
terms of tabulated functions. 

4. The functional form for ¢r 

The coupling coefficient tr in the transfer equations 
is the cross section per unit volume for scattering into 
a single Bragg reflection. As shown in many texts 
on diffraction theory (e.g. Marshall & Lovesey, 
1971), or= Qk6(Ak) on the scattering-vector scale 
[k =2(sin 0)/A] where Qk = N2cA2F2/si n 0, and 
tr= QoW(AO) on the glancing-angle scale, where 
Qo = N2cAaF2/sin 20. 

In these expressions Nc is the number of unit cells 
per unit volume, A is the neutron wavelength, 20 is 
the scattering angle. F is the structure factor per unit 
cell for the reflection under consideration. The 
Debye-Waller factor is included in F. The arguments 
of the delta functions are small deviations from the 
Bragg position. 

For primary extinction the delta function is 
replaced by a function of Ak normalized to unity. 
For secondary extinction, where the controlling quan- 
tity is the angle between mosaic blocks, o-(A0)= 
Qo6(AO), and the delta function is replaced by a 
mosaic block orientation distribution normalized so 
that ~ W(AO) d(a0)  = 1. 

Possible functional forms (also given by Sabine, 
1985) are 

cr (Ak )=QkT/ [ l+( r rTAk)2] ,  Lorentzian (L) 

cr( Ak ) = Qk T sin 2 ( rtTAk )/ ( rrTAk ) 2, 
Fresnellian (F) 

o-(Ak) = QkT exp [ -  IT"(TAk)2], Gaussian (G) 

or(Ak)=Qk T, IAk]<--I/2T, 

= 0 otherwise, Rectangular (R) 

o ' ( A k ) = Q k r ( 1 - 1 A k l T ) ,  ]Akl<--l/r, 

= 0 otherwise. Triangular (T) 

For each profile conversion to the 20 scale and calcu- 
lation of the integral breadth leads to the Scherrer 
equation for particle-size broadening with T the 
volume average of the thickness of the crystal normal 
to the diffracting plane (Wilson, 1949, p. 35). 

For secondary extinction identical functions to the 
primary-extinction case can be used by substituting 
Qo for Qk and (3 for T where G is the value of 
W(AO) at A0 = 0, For the Gaussian distribution of 
(1) G - l =  T/(2~-) 1/2, Zachariasen (1967) and Becker 
& Coppens (1974) used Fresnellian, Lorentzian and 
Gaussian functions; Hamilton (1957) and Werner 
(1974) used a rectangular function. 

5. Calculation of the extinction factor 

The notation used in this section is L, F, G, R, T as 
a superscript to identify the functional form of or, and 
L, B as a subscript to identify the cases 20- -0  and 
20 = rr, respectively. 
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The extinction factor, y, is defined in § 2 as the 
ratio of the integrated intensity of the reflection to 
the integrated intensity it would have under kinematic 
conditions. Then 

½j" {1 - e x p  [ -  2tr(Ak)D]} d(Ak) 
YL-- J tr(Ak)D d(Ak) ' 

Laue case from (4) 

Y8 = I o'_(__Ak ) d( Ak ) / 
l +tr(Ak)D / I tr(Ak) d(Ak). 

Bragg case from (5) 

The limits of integration depend on the specific 
form of tr(Ak). 

Substitution of each expression for tr(Ak) into the 
above equations and integration over Ak lead to the 
following expressions for y. In all cases x -- QkTD for 
primary extinction and x =  QoGD for secondary 
extinction. D is the path-length parameter. 

(a) Laue case 

yL = 1 -- X/2 + x 2 / 4  - 5x3/48 + . . . ,  

yF 

yG= 

y R .~_ 

yT= 

(6) 

(7) 1 - 2 x / 3  + 1 lx2/30-151x3/945 + . . . ,  

1 - 2x/(2! 21/2) + 4x2/(3 ! 31/2) 

-- 8X3/(4! 41/2) + . . . ,  (8) 

( 1 / 2 x ) [ 1 - e x p  ( - 2 x ) ] ,  (9) 

( 1 / x ) { l - ( 1 / E x ) [ 1 - e x p ( - 2 x ) ] } .  (10) 

and for the Laue case 
oo 

yL=~., J2,,+I(EA)/A, A =  NcAFD/cos O. 
o 

In these equations D is the average path length for 
the beam. The limiting values of the extinction factor 
a r e  

yB(x-->oo)=A -1, yL(x->~)=(EA) -1. 

The series for y~ [(6)] is divergent for large x; 
however, it approaches the asymptotic series 

y~ = (2/7rx)1/2[ 1 - 1/(8x) - 3/(128x 2) 

- 15/( 1024x 3) + . . . ] .  (16) 

The limiting values of the solutions (11) and (16) are 

y~(x-->~)=(1/x) 1/2, y~(x->~)=(E/Trx) 1/2. 

The quantity A of the dynamical-theory solutions 
can be readily identified with the square root of x. 
Following Zachariasen (1945, p. 130), in the Bragg 
case, T = Do, D = Do/sin 0, and hence x = A 2 ;  while, 
in the Laue case, the substitutions T = Do tan 0, D -  
Do/cos 0 again lead to x = A 2. 

Asymptotic solutions for the extinction factors of 
this paper are then 

y~-->A -1, y~-->(1.25A) -1 

Becker & Coppens (1974) note that their value of 
their primary-extinction factor approaches c/(xl/2). 
They do not comment on the numerical value of c. 
For a Fresnellian function, which they use in discuss- 
ing primary extinction, Ya --> 2/("trXl/2) as x increases. 

( b ) Bragg case 

yL=I / ( I+x ) ' / 2 ,  (11) 

yF=l - -2X/3+l lx2 /20- -151xa /315+. . . ,  (12) 

yO = 1 --x/2~/2+x2/31/2--xa/41/2+..., (13) 

y R = I / ( I + x ) ,  (14) 

yT = (2/x2)(x_ln [1 + x[). (15) 

7. Primary extinction in finite crystals 

( a ) The AA crystal 

This crystal is defined in § 2. It has edges of equal 
length to along the directions of the incident beam 
and the diffracted beam. The thickness of the crystal 
normal to the diffracting plane (T) is then to sin 0 
and the average path length through the crystal (D) 
is to; hence x = QkDT = (N~AFto) 2. 

6. Comparison with dynamical theory 

In § 2 it was shown that the extinction factor should 
approach a limiting value as the crystal size increases. 
For primary extinction only the Lorentzian or 
Fresnellian form satisfies this condition. A choice 
between these forms can be made through a com- 
parison with the results of the dynamical theory. 

For the semi-infinite flat plate of thickness Do the 
dynamical theory (Zachariasen, 1945, pp. 133-134) 
gives for the Bragg case 

YB = (tanh A)/A,  A = NcAFD/sin 0 

( b ) The sphere 

Straightforward application of the formulae of 
this paper with T - - D - - 3 r  would give x =  
9(NcAFr)2/4 sin 0. Zachariasen (1967) gives 
x(Zach) =3(NcAFr)2/2 sin20. He has taken T =  
t±/cos 0, t.L = ~r where t± is the thickness of the crystal 
perpendicular to the incident beam. When this is done 
the quantity x of this paper contains the factor 
1/sin 20. 

( c) The mosaic block 

The mosaic block, in the form of a square-section 
parallelepiped, has been examined by Olekhnovich 
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& Olekhnovich, (1978) and by Wilkins (1981). The 
variable used by both authors is, in neutron units, 
NchF/o where lo is the block side. This variable will 
be denoted by /. The starting points for both sets of 
authors are the equations of the dynamical theory. 

Olekhnovich & Olekhnovich (1978) give a solution 
for the primary-extinction factor when the Bragg 
angle is 45 ° [their Fig. 4, curve (6)]. Their result is 
the full curve in Fig. 2(a). 
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Fig. 2. (a) The single curve is the result for the square-section 
parallelepiped at a Bragg angle of 45 ° obtained by Olekhnovich 
& Olekhnovich (1978). The hatched region spans the Bragg 
(upper) and Laue (lower) solutions for the AA crystal given in 
this paper. (b) The lower curve is the result for the square-section 
parallelepiped with a Bragg angle of 20 ° obtained by 
Olekhnovich & Olekhnovich (1978). The hatched region spans 
the Bragg (upper) and Laue (lower) solutions for the AA crystal 
given in this paper. The upper curve is the result given by Wilkins 
(1981) for a mosaic block. 

At 0=45  ° the A A  crystal is a square-section 
parallelepiped. The hatched region in Fig. 2(a) corre- 
sponds to the range of values given by (6), (11), (16) 
of this paper. The upper boundary is the Bragg case; 
the lower boundary is the Laue case. The variable l 
is the square root of the x for the A A  crystal used in 
this work. 

Wilkins (1981) gives a result only for a Bragg angle 
of 20 °. In Fig. 2(b) his extinction factor [his Fig. 
14(b)] is compared with the value obtained by 
Olekhnovich & Olekhnovich (1978) [their Fig. 4, 
curve (3)]. 

Again the hatched region is bounded by the Laue 
and Bragg solutions of this paper. Wilkins (1981) 
finds empirically that the substitution T =  rosin 0, 
which is exact for the A A  crystal, is a good approxi- 
mation for the mosaic block. 

Werner (1974) suggested that the solution to the 
A A  crystal may be a good approximation for real 
crystals. The results of the present investigation indi- 
cates that this is the case. 

8. S e c o n d a r y  e x t i n c t i o n  in f inite  c r y s t a l s  

According to § 2 the secondary-extinction factor must 
also approach proportionality to the reciprocal of a 
quantity with the dimensions of length. It can be seen 
from the list of extinction factors [(6)-(15)] that when 
G, which is dimensionless, is substituted for T only 
the Gaussian, rectangular and triangular functional 
representations of or satisfy this criterion. 

It is not clear if the variable x for secondary extinc- 
tion in finite crystals should include the factor sin 20 
which is the basic difference between the formulae 
of Becker & Coppens (1974) and Zachariasen (1967). 
For primary extinction it occurs naturally in the treat- 
ment of the A A  crystal, and appears to be necessary 
for the general mosaic block. 

Hamilton (1957), Werner (1974), and this paper 
use x = Q o G D  while Becker & Coppens (1974) use 
x = Q o G D  sin 20. 

9. T h e  a n g u l a r  d e p e n d e n c e  o f  e x t i n c t i o n  

It is essential that any expression for the extinction 
factor which is to be incorporated in a crystal structure 
refinement code must allow for the dependence of 
extinction on scattering angle. 

Hamilton (1957) and Becker & Coppens (1974) 
give tables of computer solutions to this problem. 
Zachariasen (1967) and Sabine (1985) used the Bragg- 
case solution for all values of 20. Werner (1974) 
suggested that the appropriate solution should be the 
arithmetic mean of the two cases. 

In this work the angular variation is given by the 
average 

y(20) = Y t  cos 20+yB sin 2 0. (17) 
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10. The theories of  Hamilton and Becker & Coppens 

While the theories of  Hami l ton  (1957, 1963) and of  
Becker & Coppens  (1974) appear  to give very different 
values of  the extinction factor it is not difficult to 
show, using the results of  this paper,  that their  solu- 
tions to the transfer  equations are closely similar.  

( a ) H a m i l t o n  

Hamil ton  has used a rectangular  funct ional  form 
for o- and has calculated the extinction factor for a 
cylinder. His variable o-D is the same as Q o G D  of  
this paper. To convert x for the AA crystal to a value 
appropriate  to a cyl inder  x is mul t ipl ied by 3 , r /8  
since the average path length through a cyl inder  of  
diameter  D is 8D/37r .  Applicat ion of  (17) to the 
values of  yR and yR given by (9) and (14) for the 
converted x gives the full line of  Fig. 3(a).  

( b ) Becker  & Coppens  

Inspect ion of  the formulae given by Becker & 
Coppens  (1974) shows that x of  their Table 1 is 
identical  to x for the AA crystal; however, their  
extinction factor extrapolates as (2x)-1/2. To compare  
with the present  work the x of  Becker & Coppens  
must be taken as one-ha l f  the x of this paper.  When 
this is done the appl icat ion of  (17) to y~ and y~ found 
from (6), (16) and (11) gives the full line of  Fig. 3(b). 
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Fig. 3. (a) The points are taken from Table 1 of Hamilton (1963) 
for secondary extinction in a cylinder. The full lines are the 
predictions of the present work. (b) The points are taken from 
Table 1 of Becker & Coppens (1974) for primary extinction in 
a sphere. The full lines are the predictions of the present work. 

11. Experimental verification 

The conclusions of  this work concerning pr imary  
extinction have been verified to a level of  y = 0.6 by 
Sabine (1985) using neutron powder  data from speci- 
mens of  MgO of  controlled grain size. A convent ional  
diffractometer was used at a single wavelength. 

Sabine, Von Dreele & J0rgensen (1988) have used 
time-of-flight methods  on similar  specimens of MgO 
to compare  exper imental  and calculated primary- 
extinction factors to a level y = 0.3. 

12. Concluding remarks 

For very general  reasons the extinction factor, 
whether pr imary  or secondary,  must allow the 
integrated intensity to increase at a rate not less than 
the rate at which the area of  the entrance surface 
increases with crystal size. 

The pr imary-ext inct ion factor may be calculated 
using as a starting point  the Darwin energy-transfer  
equations. With the choice of  a Lorentzian funct ional  
representat ion for the coupling coefficient these 
equations provide numerica l  values which are satis- 
factory for use in crystal structure refinement.  

A suitable analytical  form of  the extinction factor 
at an arbitrary scattering angle 20 is given by 

y(20)  =YL COS 2 0 + y B  sin 2 0. 

The extinction factors at 20 = 0  and 20 = 7r are YL 
and yn respectively. 

I am indebted  to Dr D. G. Blair for providing 
l imiting solutions to the series representat ions of  
extinction factors. 
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Abstract 

Time-of-flight data have been collected from poly- 
crystalline specimens of magnesium oxide in which 
the grain size distribution is known. These data were 
obtained at scattering angles of 150, 90 and 60 °. A 
primary extinction factor given in an analytical form 
by Sabine [Acta Cryst. (1988), A44, 368-373] is 
included in a Rietveld program. The experimental 
data from the two high-angle histograms are refined 
to give an effective mosaic block size and overall 
temperature factors. The effective mosaic block size 
is used in the calculation of an extinction factor for 
each reflection. This factor is then compared with the 
ratio of measured integrated intensities. The theoreti- 
cal form of the extinction factor is verified to a level 
of 0.30. The temperature factors measured from each 
specimen are identical and in agreement with the best 
literature value. 

1. Introduction 

A well known problem in the analysis of time-of-flight 
(TOF) data by the Rietveld method (Rietveld, 1969) 
has been an inability to extract consistent temperature 
factors, when analyses are made of data on the same 
specimen taken over different ranges in TOF. In most 
cases the temperature factors from the complete data 
set are low and in some cases negative. As the upper 
TOF bound of the data is made shorter the values of 
the apparent temperature factor rise. 

This problem is caused by primary extinction 
within each perfect crystal block in the powder. In a 
brittle material the block size may be equal to the 
grain size; in a ductile material the block size may 
be orders of magnitude smaller than the grain size 
and may coincide with the sub-grain size. 

Extinction is dependent on both wavelength and 
scattering angle. However, the large range of 
wavelengths used in TOF experiments makes the 
problem more obvious. In both techniques the 
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measured temperature factors have lower values than 
the true temperature factors. 

A factor which can be used to correct integrated 
intensities for the effect of primary extinction has 
been derived by Sabine (1985, 1988). The first experi- 
mental tests of the validity of that factor were carried 
out by neutron measurements on polycrystalline 
specimens of magnesium oxide using a constant 
wavelength. 

An attempt was made to arrange the experiment 
so that there were no disposable parameters. The only 
crystallographic parameters for MgO are the Debye- 
Waller factors for each atom. Values found for these 
have been reviewed in detail by Barron (1977). 

The shape of the grains and the grain size distribu- 
tion in each specimen were determined by scanning 
electron microscopy. An untested assumption was 
that each grain was a perfect crystal. 

In the present experiment time-of-flight methods 
are used on the same specimens to provide a more 
stringent test of the theory. TOF measurements have 
the advantage of a larger range of (sin 0)/A, and a 
direct method of scaling data collected from speci- 
mens of different mass. 

Four sets of TOF data are analysed by the Rietveld 
computer program of Larson & Von Dreele (1986) 
to give an overall temperature factor and an average 
mosaic block size. The block size is compared with 
direct measurements of the extinction factors and the 
temperature factor is compared with literature values. 

2. Magnesium oxide 

Magnesium oxide has the rock salt structure. The 
space group is 05-Fm3m (No. 225); a =  
4.21145 (3) A(Howard  & Sabine, 1974). The Mg and 

1 O atoms are located at 0, 0, 0 and ½, ½, ~, respectively. 
The only crystallographic parameters are the tem- 
perature factors for each atom. Since the material is 
cubic these are isotropic. 
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